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Damped harmonic oscillator: Pure states of the bath and exact master equations

Andrey Pereverzev*
Department of Chemistry, Trinity University, San Antonio, Texas 78212, USA

~Received 7 April 2003; published 14 August 2003!

Time evolution of a harmonic oscillator linearly coupled to a heat bath is compared for three classes of
initial states for the bath modes—grand canonical ensemble, number states, and coherent states. It is shown
that for a wide class of number states the behavior of the oscillator is similar to the case of the equilibrium
bath. If the bath modes are initially in coherent states, then the variances of the oscillator coordinate and
momentum, as well as its entanglement to the bath, asymptotically approach the same values as for the
oscillator at zero temperature and the average coordinate and momentum show a Brownian-like behavior. We
derive an exact master equation for the characteristic function of the oscillator valid for arbitrary factorized
initial conditions. In the case of the equilibrium bath this equation reduces to an equation of the Hu-Paz-Zhang
type, while for the coherent states bath it leads to an exact stochastic master equation with a multiplicative
noise.
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I. INTRODUCTION

The model of an oscillator linearly coupled to the bath
harmonic oscillator has played an important part in statist
mechanics@1–3#, quantum optics@4,5#, and quantum mea
surement theory@6–8#. In most studies of this model, th
initial state for the whole system is taken as a mixed den
matrix. In particular, one often uses factorized initial sta
where the bath modes are in thermal equilibrium and
oscillator is in a pure state. Less often the so-called ther
initial conditions are used@9–12#. Pure states of the bath ar
rarely considered@13#, except for the vacuum state of th
bath.

Our goal in this paper is to compare the behavior of
oscillator for different pure initial states for the bath mod
to the case of the bath in equilibrium. The quantities we w
be considering are the averages and variances of the os
tor coordinate and momentum, as well as Trr2 as a measure
of oscillator entanglement to the bath. We also would like
show how different initial states for the bath modes lead
different exact master equations for the oscillator density m
trix. In deriving such equations, we will use an exact form
solution for the characteristic function of the oscillator, rath
than the path integral techniques for the reduced density
trix @7,14,11,10#. This approach makes it possible for th
model to obtain master equations for arbitrary factorized
tial conditions.

This paper is organized as follows. In Sec. II we consi
the model and its exact solution. In Secs. III, IV, and V t
oscillator behavior is considered, respectively, for the b
modes in equilibrium, number states, and coherent sta
Exact master equations are discussed in Sec. VI. Conclu
remarks are given in Sec. VII

*Electronic address: andrey.pereverzev@trinity.edu
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II. THE MODEL OF A LINEARLY COUPLED OSCILLATOR

The system Hamiltonian is given by

H5\na†a1(
k

\vkbk
†bk1(

k
\uka

†bk1(
k

\uk* bk
†a

1(
k

\vka
†bk

†1(
k

\vk* bka. ~1!

Herea† anda are the creation and annihilation operators
the harmonic oscillator andbk

† and bk are the creation and
annihilation operators for the bath modes. The coefficie
are assumed to be such that the Hamiltonian is a pos
definite quadratic form. The coordinate and momentum
erators for the oscillator are related toa† anda through

x5A \

2mn
~a†1a!, p5 iA\mn

2
~a†2a!, ~2!

wherem is the oscillator mass. By a suitable choice of co
ficients, Hamiltonian~1! reduces to the Hamiltonian with
coordinate-coordinate coupling or the rotating wave appro
mation ~RWA! Hamiltonian. In particular, in the latter cas
the last two terms in Eq.~1! are dropped. We will assum
that if the number of the bath modes increases to infinity,
frequencyvk becomes a continuous function ofk. We will
refer to the limit of the infinite number of modes with ave
age energy of each mode being held constant as the the
dynamic limit.

Various forms of Hamiltonian~1! corresponding to differ-
ent choices of frequencies and coupling constants as we
its exact diagonalization have been extensively studied in
literature. General but formal discussion of the diagonali
tion of a Hermitian quadratic bosonic form@of which Eq.~1!
is a special case# can be found in Ref.@15#. Systems of
oscillators with coordinate only coupling were considered
Ref. @16#. Detailed investigation of Hamiltonian~1! in the
©2003 The American Physical Society11-1
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case of coordinate coupling can be found in Refs.@2,9,17#.
Relation between several forms of Eq.~1! and the transla-
tionally invariant Hamiltonian with coordinate coupling wa
discussed in Ref.@18#. Relation between the coordinate co
pling and RWA is studied in Ref.@12,17#.

The equations of motion for the annihilation and creat
operators are

ȧ52 ina2 i(
k

ukbk2 i(
k

vkbk
† ,

ḃk52 ivkbk2 iuk* a2 ivka
†,

ȧ†5 ina†1 i(
k

uk* bk
†1 i(

k
vk* bk ,

ḃk
†5 ivkbk

†1 iuka
†1 ivk* a. ~3!

This system of equations can be solved subject to the se
initial conditions a(0)5a, bk(0)5bk , a†(0)5a†, and
bk

†(0)5bk
† . Since system~3! is linear, its solutions will de-

pend linearly on the initial conditions. In particular,a(t) is
given by

a~ t !5A~ t !a1(
k

Bk~ t !bk1C~ t !a†1(
k

Dk~ t !bk
† . ~4!

Similarly, for a†(t) we have

a†~ t !5A* ~ t !a†1(
k

Bk* ~ t !bk
†1C* ~ t !a1(

k
Dk* ~ t !bk.

~5!

CoefficientsA(t), Bk(t), C(t), andDk(t) satisfy the follow-
ing relation~see Ref.@15# for details!:

uA~ t !u22uC~ t !u21(
k

uBk~ t !u22(
k

uDk~ t !u251. ~6!

They can, in principle, be calculated for each particular fo
of frequencies and coupling parameters. For the purpose
this paper, we will not need explicit expressions for the
coefficients. The only assumption we will use is that in t
thermodynamic limit coefficientsA(t) and C(t) vanish for
t→`, and Bk(t) and Dk(t) remain bounded in the sam
limit. Physically, these requirements correspond to the
that the initial state of the oscillator is forgotten for lon
times while any observables associated with it~e.g., average
energy! remain finite. The detailed calculations of coef
cients that show such behavior as well as conditions on
coupling constants and frequencies in the thermodyna
limit can be found in the original references@1,9,2,17,10#.

The reduced dynamics of the oscillator is convenien
described in terms of a symmetrically ordered characteri
function defined as@4#

x~h,t !5Tr~reha†2h* a!. ~7!
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Herex(h,t) can be treated as a function ofh, h* , andt. We
will always suppress the second variable to simplify the n
tation. Using characteristic function~7!, we can calculate ex-
pectation values of the symmetrized products of operatorsa†

anda. It can also be converted to any of the quasiprobabi
distribution functions or the reduced density matrix@4#. We
will also use Trr2 as a measure of purity of the oscillato
stater. In terms of the characteristic function, Trr2 is given
by

Trr25
1

pE d2hux~h!u2. ~8!

To see howx(h,t) evolves in time, we use the Heisenbe
picture and insert expressions~4! and ~5! into ~7! to obtain

x~h,t !5TrS re(hA* 2h* C)a†2(h* A2hC* )a

3)
k

e(hBk* 2h* Dk)bk
†
2(h* Bk2hDk* )bkD . ~9!

The time dependence of the coefficients is suppressed
and whenever possible to avoid heavy notation.

In this paper we consider only factorized initial cond
tions, i.e., we assume that the initial density matrix of t
whole systemr total factorizes into the oscillator and bat
density matrices asr total5r ^ rbath . In this case, the char
acteristic function takes the form

x~h,t !5x„~hA* 2h* C!,0…F~h,t !, ~10!

with

F~h,t !5TrS rbath)
k

e(hBk* 2h* Dk)bk
†
2(h* Bk2hDk* )bkD .

~11!

Equation~10! expresses the oscillator characteristic functi
at time t in terms of the initial characteristic function. In th
limit of long times, whenA and C vanish, characteristic
function x(h,t) is determined by the asymptotic form o
F(h,t).

We will now consider the time evolution and asympto
values of the average oscillator coordinate and moment
the coordinate and momentum variances, and Trr2 for dif-
ferent initial states of the bath.

III. EQUILIBRIUM STATE OF THE BATH

This section consists primarily of an overview of we
known results. The state of the bath is the grand canon
ensemble given by

req5)
k

~12e2b\vk!e2b\vkbk
†bk. ~12!

Using the identity

Tr~reqe
hbk

†
2h* bk!5e2uhu2(n̄k1 1/2), ~13!
1-2
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with

n̄k5
1

eb\vk21
, ~14!

we find functionF(h,t) to be

F~h,t !5e2auhu21g* h21gh* 2
. ~15!

Here coefficientsa andg are given by

a5(
k

~ uBku21uDku2!S n̄k1
1

2D ,

g5(
k

BkDkS n̄k1
1

2D . ~16!

We will often use coefficientsa andg in the limits t→` or
T→0. In such cases we will use the notationa` , g` and
a0, g0, respectively. If both limits are taken we will usea`

0

andg`
0 .

The time evolution of the average coordinate and mom
tum is easily calculated either through the characteri
function or by directly using Eqs.~4! and ~5!.

^x~ t !&5A \

2mn
@~A* 1C!^a†&1~A1C* !^a&#,

^p~ t !&5 iA\mn

2
@~A* 1C!^a†&2~A1C* !^a&#. ~17!

There is no dependence on the state of the bath. For arbi
temperaturê x(t)& and ^p(t)& depend only on their initial
average values. In the limit of infinitely long times^x(t)&
and ^p(t)& vanish.

For the variances of the oscillator coordinate and mom
tum, we obtain

^x2~ t !&2^x~ t !&25
\

2mn F ~A* 1C!2~^a†a†&2^a†&^a†&!

1~A1C* !2~^aa&2^a&^a&!

12u~A1C* !u2S ^a†a&2^a†&^a&1
1

2D
12~a1g1g* !G ,

^p2~ t !&2^p~ t !&25
\mn

2 F2~A* 2C!2~^a†a†&2^a†&^a†&!

2~A2C* !2~^aa&2^a&^a&!

12u~A2C* !u2S ^a†a&2^a†&^a&1
1

2D
12~a2g2g* !G . ~18!

These quantities depend both on the initial state of the os
lator and the temperature of the bath. Fort→`, we have
02611
-
ic

ry

-

il-

^x2&2^x&25
\

mn
~a`1g`1g *̀ !,

^p2&2^p&25\mn~a`2g`2g *̀ !. ~19!

Coefficientsa` andg` are proportional ton̄k . Therefore, at
high temperatures variances~19! grow askT.

The measure of the oscillator purity is given by the in
gral

Trr25
1

pE d2hux„~hA* 2h* C!,0…u2e22(auhu22g* h22gh* 2).

~20!

This integral can be calculated for specific initial states of
oscillator. For infinitely long times, when the initial state
forgotten, we obtain

Trr25
1

2Aa`
2 24ug`u2

. ~21!

For high temperatures, Trr2 is proportional to 1/kT. The
state of the oscillator becomes less pure as the tempera
grows. Let us note that for intermediate times Trr2 can take
lower values than its value att→`. For zero temperature o
the bath, the asymptotic value of Trr2 will, in general, be
less than 1 since the oscillator remains dressed atT50.

For the special case of the RWA Hamiltonian, coefficien
C(t) and Dk(t) in Eqs. ~4! and ~5! are equal to zero. As a
result,a`

0 5 1
2 andg50 and for long times Trr251. In this

case, the reduced vacuum of the oscillator is a pure state
is identical to the ground state of the uncoupled oscillato

IV. THE NUMBER STATES FOR THE BATH MODES

We now consider the initial state of the bath with ea
mode in a number state

u$nk%&5unk1
& ^ unk2

& ^ •••, ~22!

with $nk% denoting a set of occupation numbersnk for all
modes.

FunctionF(h,t) can be calculated using the identity@19#

^nkuehbk
†
2h* bkunk&5e2uhu2/2Lnk

~ uhu2!, ~23!

whereLn(x) is a Laguerre polynomial. We obtain

F~h,t !5e2a0uhu21g0* h21g0h* 2

)
k

Lnk
„u~hB* k2h* Dk!u2….

~24!

The behavior of average coordinate and momentum of
oscillator is exactly the same as for the equilibrium state
the bath and given by Eq.~17!. Thus,^x(t)& and ^p(t)& do
not depend on the particular set of occupation numbers. B
1-3
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quantities vanish fort→`. For the variances of the coord
nate and momentum, we have

^x2~ t !&2^x~ t !&25
\

2mn F ~A* 1C!2~^a†a†&2^a†&^a†&!

1~A1C* !2~^aa&2^a&^a&!

12u~A1C* !u2S ^a†a&2^a†&^a&1
1

2D
12~ ã1g̃1g̃* !G ,

^p2~ t !&2^p~ t !&25
\mn

2 F2~A* 2C!2~^a†a†&2^a†&^a†&!

2~A2C* !2~^aa&2^a&^a&!

12u~A2C* !u2S ^a†a&2^a†&^a&1
1

2D
12~ ã2g̃2g̃* !G , ~25!

where

ã5(
k

~ uBku21uDku2!S nk1
1

2D ,

g̃5(
k

BkDkS nk1
1

2D . ~26!

The variances differ from the equilibrium ensemble case
the replacement ofn̄k with nk .

To get a better picture of how these values relate to
equilibrium case, we have to make some assumption a
the occupation numbers. Let us consider an ensemble o
occupation number states corresponding to the number
decomposition of the equilibrium density matrix

req5(
$nk%

u$nk%&Pn~$nk%!^$nk%u. ~27!

Here the probability for a particular set of occupation nu
bersPn($nk%) is given by

Pn~$nk%!5)
k

~12e2b\vk!e2b\vknk. ~28!

We now assume that the number states are taken from
semble~27!. Any quantities calculated for each individu
number state~e.g., averages, variances, Trr2) can then be
averaged overPn($nk%) to obtain their average values i
ensemble~27!. These latter averages will give typical valu
for the pure state quantities in ensemble~27!.

Averaging variances~25! over ensemble~27! will give the
same variances as for the equilibrium case. In particular
the limit of long times, we have
02611
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^x2&2^x&25
\

mn
~a`1g`1g *̀ !,

^p2&2^p&25\mn~a`2g`2g *̀ !. ~29!

Here, we use overlining to denote averaging over the
semble of pure states.

The fact that the average variances are the same as fo
equilibrium ensemble is not surprising since expressions
Eq. ~25! are linear innk’s. More importantly, in the thermo-
dynamic limit almost all states in ensemble~27! will have
the same variances as in equilibrium. Let us show this for
coordinate variance. We can treat the coordinate varianc
a function of random variablesnk described by the distribu
tion Pn($nk%). Calculating the variance of this function fo
the distributionPn($nk%), we obtain

~^x2&2^x&2!22~^x2&2^x&2! • ~^x2&2^x&2!

5
\2

m2n2 (
k

u~Bk1Dk* !u4~ n̄k
22n̄k

2!. ~30!

We note that coefficientsBk and Dk must depend on the
number of bath modesN as 1/AN in order for the quantities
like Eq. ~25! to remain finite in the thermodynamic limit
Therefore, the sum overk in Eq. ~30! is proportional to 1/N
and vanishes forN→`. A similar argument can be applie
to @^p2(t)&2^p(t)&2#. Thus, as in equilibrium case, we ex
pect the variances to grow askT for high occupation num-
bers.

Let us now consider the behavior of Trr2. Using defini-
tion ~8! and characteristic function~24!, we obtain

Trr25
1

pE d2hux„~hA* 2h* C!,0…u2

3e22(a0uhu22g0* h22g0h* 2)

3)
k

Lnk

2
„u~hB* k2h* Dk!u2

…. ~31!

If number states are taken from ensemble~27!, we can cal-
culate average Trr2 for number states in this ensemble. U
ing the identity@20#

(
n

Ln
2~x!zn5

1

12z
expS 2

2zx

12zD ~ uzu,1!, ~32!

we obtain

Trr25
1

pE d2hux„~hA* 2h* C!,0…u2e22(auhu22g* h22gh* 2).

~33!

This is exactly the same as Trr2 in Eq. ~20!. We can see that
at least on the average, Trr2 for number states from en
semble~27! is the same at all times as for the case of eq
librium bath. As a consequence, in the limit of long times t
1-4
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state of the oscillator becomes less pure for higher occu
tion numbers for the bath modes.

V. COHERENT STATES FOR THE BATH MODES

We now consider the case where all bath modes are
tially in coherent states.

u$bk%&5ubk1
& ^ ubk2

& ^ •••, ~34!

with $bk% denoting a set of complex numbersbk specifying
the coherent states. One can interpret such a state as the
classical state of the bath. FunctionF(h,t) is calculated to
be

F~h,t !5ed* h2dh* 2a0uhu21g0* h21g0h* 2
. ~35!

Here

d5(
k

~Bkbk1Dkbk* !. ~36!

For the average coordinate and momentum, we obtain

^x~ t !&5A \

2mn
@~A* 1C!^a†&1~A1C* !^a&1d1d* #,

^p~ t !&5 iA\mn

2
@~A* 2C!^a†&2~A2C* !^a&1d* 2d#.

~37!

To get a better understanding of how^x(t)& and ^p(t)& be-
have, we have to make some assumption about param
bk .

Analogously to the procedure used for the number s
bath, let us assume that the coherent states are taken fro
ensemble corresponding to the coherent states decompo
of the equilibrium density matrix

req5E d2$bk%u$bk%&Pc~$bk%!^$bk%u. ~38!

The probability distributionPc($bk%) is given by

Pc~$bk%!5)
k

1

pn̄k

expS 2ubku2

n̄k
D . ~39!

Decomposition~38! is just theP representation of the equ
librium density matrix@4#.

If the coherent states are taken from ensemble~38!, then,
for each set of the coherent states,d(t) is a realization of a
complex colored normal noise with zero mean and corre
tion functions given by

d~ t !d* ~ t8!5(
k

@Bk~ t !Bk* ~ t8!1Dk~ t !Dk* ~ t8!#n̄k ,

d~ t !d~ t8!5(
k

@Bk~ t !Dk~ t8!1Bk~ t8!Dk~ t !#n̄k . ~40!
02611
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Clearly,^x(t)& and^p(t)& are also realizations of the norma
noise. The mean in this case is, in general, nonzero but
go to zero for long times.

Let us evaluate the typical asymptotic values taken
^x(t)& and ^p(t)&. This can be done by calculating avera
^x&2 and ^p&2 for ensemble~38!,

^x&25
\

mn
~a`1g`1g *̀ 2a`

0 2g`
0 2g0*̀ !, ~41!

^p&25\mn~a`2g`2g *̀ 2a`
0 1g`

0 1g0*̀ !. ~42!

For high temperatures, these quantities are proportiona
kT. Therefore, typical asymptotic values for^x& and^p& are
proportional toAkT.

The coordinate and momentum variances are the sam
for the case of equilibrium bath at zero temperature, i.e., t
are given by Eq.~18! with a andg replaced bya0 andg0,
respectively. Therefore, these variances do not depend
particular set of parametersbk and their asymptotic value
are the same as for the reduced vacuum state of the oscill

The value of Trr2 is given by

Trr25
1

pE d2hux„~hA* 2h* C!,0…u2

3e22(a0uhu22g0* h22g0h* 2), ~43!

and is the same as in the case of zero temperature bath
the asymptotic value given by

Trr25
1

2A~a`
0 !224ug`

0 u2
. ~44!

More generally, the asymptotic characteristic function is d
termined by the asymptotic form of functionF(h,t) ~35! and
corresponds to the density matrix that is a displaced redu
vacuum statervac ,

r5D~d!rvacD
†~d!, ~45!

where the displacement operatorD(d) is given by

D~d!5eda†2d* a. ~46!

We can conclude that for coherent states bath in the li
of long times the oscillator becomes localized in the follo
ing sense: the coordinate and momentum variances, as
as entanglement to the bath, are same as for the red
vacuum~and do not depend on temperature!, while the aver-
age coordinate and momentum randomly fluctuate with
amplitude of the fluctuations proportional toAkT. The rate
of such localization is of the order of the relaxation rate
can be concluded from Eq.~18! for T50.

For the special case of the RWA Hamiltonian, th
asymptotic state of the oscillator is a pure coherent state.
oscillator can start in a mixed or pure state, it then go
through a period of entanglement and asymptotically its s
becomes a pure coherent state with randomly fluctuating
1-5
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ANDREY PEREVERZEV PHYSICAL REVIEW E68, 026111 ~2003!
erage coordinate and momentum. If the oscillator is initia
in a coherent state it will always remain in a coherent sta
never entangling with the bath@21#. In the Appendix, we
give explicit expressions for Trr2(t) for two types of initial
oscillator states for the RWA case.

VI. EXACT MASTER EQUATIONS

There is a similarity of a mathematical nature between
coherent states bath and bath in equilibrium. In both ca
function F(h,t) is Gaussian, and, as a result, the charac
istic function satisfies simple master equations as will
shown shortly.

Before doing so let us note that for any factorized init
conditions~for any system-bath model! there always exists
an exact equation for the reduced density matrix with
time evolution governed by a time-dependent operator
does not depend on the state of the system. Obtaining
explicit expression for such an operator can, in general, b
difficult task. Let us show that such an operator can be c
structed for the present model. We will continue to use
characteristic function space because of its mathema
convenience. If necessary, the equations can be transfo
into other representations. To simplify the demonstration,
introduce the following transformed characteristic functio

x̃~h,t !5
x~h,t !

F~h,t !
. ~47!

Using expression~10! for x(h,t) and the fact thatx̃(h,0)
5x(h,0), we can write functionx̃(h,t) at timet in terms of
x̃(h,0) as

x̃~h,t !5x̃„~hA* 2h* C!,0…. ~48!

We now use the fact thatx̃(h,t) depends onh, h* , and t
only through (hA* 2h* C) and (h* A2hC* ). Differentiat-
ing solution~48! with respect to time, we have

]x̃

]t
5

]x̃

]~hA* 2h* C!
~hȦ* 2h* Ċ!1

]x̃

]~h* A2hC* !
~h* Ȧ

2hĊ* !. ~49!

For derivatives with respect toh andh* , we obtain

]x̃

]h
5

]x̃

]~hA* 2h* C!
A* 2

]x̃

]~h* A2hC* !
C* ,

]x̃

]h*
52

]x̃

]~hA* 2h* C!
C1

]x̃

]~h* A2hC* !
A. ~50!

Solving the last two equations for the derivatives ofx̃ with
respect to (hA* 2h* C) and (h* A2hC* ) and substituting
them in Eq.~49!, we obtain a closed equation forx̃,
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]x̃

]t
5@j* ~ t !h1z~ t !h* #

]x̃

]h
1@j~ t !h* 1z* ~ t !h#

]x̃

]h*
.

~51!

Herej(t) andz(t) are given by

j~ t !5
A* Ȧ2C* Ċ

uAu22uCu2
, z~ t !5

CȦ2AĊ

uAu22uCu2
. ~52!

Substituting definition ofx̃ ~47! into Eq. ~51! we obtain the
following equation forx:

]x

]t
5@j* ~ t !h1z~ t !h* #F ]x

]h
2S ] ln F

]h DxG
1@j~ t !h* 1z* ~ t !h#F ]x

]h*
2S ] ln F

]h*
D xG1S ] ln F

]t Dx.

~53!

This is a closed equation for characteristic functionx(h,t).
The explicit form of the time-dependent operator is det
mined by functionF(h,t), which, in turn, is determined by
the initial state of the bath. We will not go into the analys
of this equation and limit ourselves to a few remarks. T
equation is always local in theh space. However, transform
ing it into the quasiprobability distribution space or coord
nate or momentum representation for the density matrix w
in general, lead to nonlocal equations. Only for some spe
forms ofF(h,t) can we expect to get local equations in the
representations. Note that exact master equations for
oscillator-bath model that appeared in the literature use e
librium initial state for the bath@2,7#, squeezed equilibrium
for the bath@14#, or modified equilibrium for the whole sys
tem @11,10#. When converted into the characteristic functio
space, all these equations contain time-dependent oper
that are at most quadratic inh, h* , ]/]h, and]/]h* . This
form of the time-dependent operator is related to the fact
propagating function for such initial conditions is Gaussia
Inspection of Eq.~53! shows that such a simple form of th
time-dependent operator in our case is possible only
Gaussian functionsF(h,t).

We now consider particular form of Eq.~53! for this spe-
cial case, i.e., when functionF(h,t) is given by

F~h,t !5ed* h2dh* 2auhu21g* h21gh* 2
. ~54!

Here,d, a, andg are time-dependent parameters charac
izing each particular Gaussian state of the bath. Func
~54! will include such states for the bath modes as equi
rium, squeezed states, squeezed and displaced equilibr
etc. Substituting Eq.~54! into Eq.~53!, we obtain after some
simplifications
1-6
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]x

]t
5@j* ~ t !h1z~ t !h* #

]x

]h
1@j~ t !h* 1z* ~ t !h#

]x

]h*

1k~ t !uhu2x1m* ~ t !h2x1m~ t !h* 2x1s* ~ t !hx

2s~ t !h* x. ~55!

Coefficientsk(t), m(t), ands(t) are given by

k~ t !5a~j1j* !22~zg* 1z* g!2ȧ,

m~ t !5za22jg1ġ,

s~ t !5zd* 2jd1 ḋ. ~56!

In the case of the equilibrium bath, we need to puta5a,
g5g, andd50 in Eq. ~56!. In this case, the last two term
on the right-hand side of Eq.~55! disappear and the equatio
becomes the characteristic function version of the Hu-P
Zhang equation@7,2# for Hamiltonian~1!, i.e., it will allow
for the possibility of momentum-momentum an
momentum-coordinate couplings between the bath and
oscillator.

If the bath modes are initially in coherent states then
have to usea5a0, g5g0, andd5d. If the coherent states
are taken from ensemble~38!, then, for each particular set o
states,s(t) will be a realization of a complex colored norm
noise. The equation becomes a stochastic master equ
with a multiplicative noise. In this case Eq.~55! describes
the oscillator localization in the sense discussed above
the average coordinate and momentum subject to ran
fluctuation. Equations of such type can be of interest in
theory of quantum measurement as an alternative to the
chastic Schro¨dinger equations@22#. In particular, compared
to the latter equations, Eq.~55! does not conserve purity o
the state. Such behavior is more physically plausible fo
system coupled to a bath.

VII. CONCLUDING REMARKS

Equilibrium density matrix is often considered as an ir
ducible concept, viz., it is assumed that this is a true stat
the bath in each individual experiment. We believe that s
a view is an oversimplification, and it is more realistic
assume that true state of the bath is a density matrix or e
a pure state which includes some random component.
semble of such states for different realizations of the rand
component gives an equilibrium density matrix. Such a vi
is partially supported by classical statistical mechanics.
deed, most physicists agree that the ‘‘true state’’ of the c
sical bath in thermal equilibrium is a point in phase spa
The coarse-grained macroscopic observables for such a
~e.g., number of particles in a volume element! are essen-
tially the same as calculated for one of the Gibbs ensem
~of such points! for large enough course graining@23#.

It is true that the ensemble decomposition of the equi
rium density matrix in terms of other density matrices~or
pure states! is not unique, and that the averages calcula
for any decomposition are identical to equilibrium averag
02611
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We believe, however, that it can be of importance, that, wh
quantities like variances and Trr2 are calculated for indi-
vidual members of the ensemble, we can get drastically
ferent behavior for the system for different decompositio
as was shown in this paper.
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APPENDIX

In this appendix, we give explicit expressions for Trr2(t)
for two types of initial pure states of the oscillator for th
RWA Hamiltonian if the bath modes are initially in cohere
states.

Let the oscillator be initially in a squeezed state obtain
by acting on the oscillator ground state with the squeez
and displacement operators

uc&5D~a!S~«!u0&. ~A1!

Here the squeezing operatorS(«) is given by

S~«!5e(«* /2)a2(«/2)a†
, ~A2!

and «5re2if is a complex squeezing parameter. Using e
pression~43! for Trr2, we obtain

Trr2~ t !5
1

A114uA~ t !u2@12uA~ t !u2#sinh2r
. ~A3!

The maximum entanglement@or minimum Trr2(t)] is
reached whenuA(t)u251/2. Moreover, Trr2(t) is a symmet-
ric function of uA(t)u2 with respect to this point. When
uA(t)u251/2, we have

Trr25
1

A11sinh2r
. ~A4!

We have larger entanglement for larger squeezing with Tr2

going to zero whenr goes to infinity.
We now consider an initial state of the oscillator given

a superposition of two coherent states

uc&5
1

AN
~ ua&1ub&), ~A5!

whereN is the normalization constant,

N521^aub&1^bua&. ~A6!

In this case we obtain for Trr2(t),
1-7
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Trr2~ t !511
2

N2
~e2[12uA(t)u2] ua2bu21e2uA(t)u2ua2bu2

2e2ua2bu221!. ~A7!

One can easily verify that Trr2(t) takes its minimum value
again at uA(t)u251/2, and Trr2(t) is again a symmetric
function of uA(t)u2 with respect to that point, which may b
a general property of this model. Let us consider Trr2(t) at
uA(t)u251/2. We have

Trr2512
2

N2
~12e2ua2bu2/2!. ~A8!
ic

n
ca

hl

02611
Using Eq.~A6!, writing ^aub& as Reiw and remembering tha

e2ua2bu2/25u^aub&u, ~A9!

we obtain

Trr2512
~12R!2

2~11R cosw!2
. ~A10!

We can see from the last expression that the minimum Tr2

decreases with the decreasing overlap between the two
herent states. Note, however, that in this case Trr2 can never
become less than 1/2.
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