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Damped harmonic oscillator: Pure states of the bath and exact master equations
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Time evolution of a harmonic oscillator linearly coupled to a heat bath is compared for three classes of
initial states for the bath modes—grand canonical ensemble, number states, and coherent states. It is shown
that for a wide class of number states the behavior of the oscillator is similar to the case of the equilibrium
bath. If the bath modes are initially in coherent states, then the variances of the oscillator coordinate and
momentum, as well as its entanglement to the bath, asymptotically approach the same values as for the
oscillator at zero temperature and the average coordinate and momentum show a Brownian-like behavior. We
derive an exact master equation for the characteristic function of the oscillator valid for arbitrary factorized
initial conditions. In the case of the equilibrium bath this equation reduces to an equation of the Hu-Paz-Zhang
type, while for the coherent states bath it leads to an exact stochastic master equation with a multiplicative
noise.
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I. INTRODUCTION Il. THE MODEL OF A LINEARLY COUPLED OSCILLATOR

The system Hamiltonian is given by

The model of an oscillator linearly coupled to the bath of
harmonic oscillator has played an important part in statistical
mechanicd1-3], quantum optic§4,5], and quantum mea-
surement theory6—8]. In most studies of this model, the
initia] state for Fhe whole system is taken as a mi_xgq density + 2 hvkaTler 2 fvkba. (1)
matrix. In particular, one often uses factorized initial state K K
where the bath modes are in thermal equilibrium and the
oscillator is in a pure state. Less often the so-called thermdfierea’ anda are the creation and annihilation operators of
initial conditions are usefp—12). Pure states of the bath are the harmonic oscillator antl} and by are the creation and
rarely considered13], except for the vacuum state of the annihilation operators for the bath modes. The coefficients
bath. are assumed to be such that the Hamiltonian is a positive

Our goal in this paper is to compare the behavior of thedefinite quadratic f_orm. The coordinate and momentum op-
oscillator for different pure initial states for the bath modeserators for the oscillator are relatedad anda through
to the case of the bath in equilibrium. The quantities we will
be considering are the averages and variances of the oscilla- Y= L(aTJra) i @ T

: V . p=i\——(@-a), (2

tor coordinate and momentum, as well agp?Tas a measure 2my 2
of oscillator entanglement to the bath. We also would like to
show how different initial states for the bath modes lead tovheremis the oscillator mass. By a suitable choice of coef-
different exact master equations for the oscillator density maficients, Hamiltonian(1) reduces to the Hamiltonian with -
trix. In deriving such equations, we will use an exact formalcoordinate-coordinate coupling or the rotating wave approxi-
solution for the characteristic function of the oscillator, rathermation (RWA) Hamiltonian. In particular, in the latter case

than the path integral techniques for the reduced density m&Ee l_ii‘s;] two tet;ms icn thél) r?re ?Ijropped. we wil _aﬁsteh
trix [7,14,11,10. This approach makes it possible for this tnat If the number of the bath modes increases to infinity, the

model to obtain master equations for arbitrary factorized ini_frequencywk. bgcomes a continuous function lof we will
tial conditions. refer to the limit of the infinite number of modes with aver-

This paper is organized as follows. In Sec. Il we consider.J¢ SNerdy of each mode being held constant as the thermo-

. : dynamic limit.
the .model and 'FS e_xact so_lut|on. In Secs.- ll, 1V, and V the Various forms of Hamiltoniaril) corresponding to differ-
oscillator behavior is considered, respectively,

: vior for the bathyt choices of frequencies and coupling constants as well as
modes in equilibrium, number states, and coherent stategs exact diagonalization have been extensively studied in the
Exact master equations are discussed in Sec. VI. Concludingerature. General but formal discussion of the diagonaliza-
remarks are given in Sec. VII tion of a Hermitian quadratic bosonic forfof which Eq.(1)
is a special cagecan be found in Ref[15]. Systems of
oscillators with coordinate only coupling were considered in
*Electronic address: andrey.pereverzev@trinity.edu Ref. [16]. Detailed investigation of Hamiltoniafil) in the

H=hva'a+ >, hwbib+ >, fua’b+ >, fuibla
k k k
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case of coordinate coupling can be found in Rg®9,17. Here x(7n,t) can be treated as a function gf »*, andt. We
Relation between several forms of Ed) and the transla- will always suppress the second variable to simplify the no-
tionally invariant Hamiltonian with coordinate coupling was tation. Using characteristic functidi@), we can calculate ex-
discussed in Ref.18]. Relation between the coordinate cou- pectation values of the symmetrized products of operatbrs

pling and RWA is studied in Ref12,17). anda. It can also be converted to any of the quasiprobability
The equations of motion for the annihilation and creationdistribution functions or the reduced density maf{dy. We
operators are will also use Tp? as a measure of purity of the oscillator
statep. In terms of the characteristic function,gfris given
a=—iva—i ub—iS vl by
K K 1
. TFPZ=;J d?zlx(n)]%. ®)
by=—iwby—iufa—iv.a,

To see howy(#,t) evolves in time, we use the Heisenberg
af=iva'+i>, ufbl+i> vib, picture and insert expressiof®) and (5) into (7) to obtain
k K
x( n,t):Tr< Pe(”A**n* C)al—(n* A- nC*)a
bi=iwbl+iua’+ivia. (3)

)

This system of equations can be solved subject to the set of x [ e7Bi~7"Db-(7*B-mDOby | ()

initial conditions a(0)=a, b,(0)=b,, a'(0)=a', and K

fry—pt o o : : -

b(0)=by . Since systent3) is linear, its solutions will de- g time dependence of the coefficients is suppressed here

pend linearly on the initial conditions. In particula(t) is  5nq whenever possible to avoid heavy notation.

given by In this paper we consider only factorized initial condi-
tions, i.e., we assume that the initial density matrix of the

a(t)=A(t)a+ >, By(t)b+C(t)a'+ >, Dy(t)bl. (4) whole systempiq factorizes into the oscillator and bath
k k density matrices ap;oiai=pP® ppath- 1N this case, the char-
acteristic function takes the form

Similarly, for a’(t) we have
x(7,1)=x((nA* = *C),00F(n,1), (10

a*(t)=A*(t)aT+Ek B’k‘(t)bl—l—C*(t)a+; D (t)by. with
(5

CoefficientsA(t), By(t), C(t), andD(t) satisfy the follow-
ing relation(see Ref[15] for details:

F(7t)=Tr| ppa] ] €78 ~ 7 Dby (7" B nDby |
k
(17)

Equation(10) expresses the oscillator characteristic function
at timet in terms of the initial characteristic function. In the
limit of long times, whenA and C vanish, characteristic
function y(#,t) is determined by the asymptotic form of
They can, in principle, be calculated for each particular formF(7,t).

of frequencies and coupling parameters. For the purposes of We will now consider the time evolution and asymptotic
this paper, we will not need explicit expressions for thesevalues of the average oscillator coordinate and momentum,
coefficients. The only assumption we will use is that in thethe coordinate and momentum variances, anef Tor dif-
thermodynamic limit coefficient&\(t) and C(t) vanish for  ferent initial states of the bath.

t—oo, and By(t) and D\(t) remain bounded in the same

|A<t>|2—|<:<t)|2+§ IBk<t>|2—Ek IDW(D[2=1. (6)

limit. Physically, these requirements correspond to the fact ll. EQUILIBRIUM STATE OF THE BATH
that the initial state of the oscillator is forgotten for long
times while any observables associated witfeiy., average This section consists primarily of an overview of well-

energy remain finite. The detailed calculations of coeffi- known results. The state of the bath is the grand canonical
cients that show such behavior as well as conditions on thensemble given by
coupling constants and frequencies in the thermodynamic

limit can be found in the original referencgg,9,2,17,10. _ _ +
; ; Nt _ _ o Bho Bhwb'b
The reduced dynamics of the oscillator is conveniently Peq l_k[ (1—e P9 Fadc. (12)
described in terms of a symmetrically ordered characteristic
function defined a$4] Using the identity
* T % .
X(nt)=Tr(pe™ ~7"3). (7) Tr(peqe™ 7" D) =77 (s 112), (13
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with
[ (14
efhox—1
we find functionF(#,t) to be
F(p,t)=e anl®ty nPeyn*? (15)
Here coefficientsx and y are given by
a=3 (B2+ D3| 7+ 5.
y=2k Bka(Fk"'% : (16)

We will often use coefficienta andvy in the limitst—oo or
T—0. In such cases we will use the notatian, y., and
a®, ¥°, respectively. If both limits are taken we will usé

andy? .

The time evolution of the average coordinate and momen-
tum is easily calculated either through the characteristic

function or by directly using Eqg4) and(5).

h
(x(1) = \[5 (A +C)(a")+(A+C*)(@)],

hAmv
(p(D) =i\ oL (A* +C)fah)— (A+C*)(@)]. (17

PHYSICAL REVIEW E 68, 026111 (2003

2\ __ ZZi *
<X> <X> mv(aoc_l—'yoc_l—')’w)u

<p2>_<p>2:hmv(aw_7w_7;)' (19)

Coefficientsa., andy., are proportional tchk. Therefore, at
high temperatures varianc€k9) grow askT.

The measure of the oscillator purity is given by the inte-
gral

1 * *
TVPZZEJ d2 7] ( 9A* = 7* C),0)| %™ 2lell* =" o=y,
(20)

This integral can be calculated for specific initial states of the
oscillator. For infinitely long times, when the initial state is
forgotten, we obtain

1

2\/amz—4|yw|2-

For high temperatures, gf is proportional to T. The
state of the oscillator becomes less pure as the temperature
grows. Let us note that for intermediate timegp&¥can take
lower values than its value &t-o. For zero temperature of
the bath, the asymptotic value of gfr will, in general, be
less than 1 since the oscillator remains dressef=al.

For the special case of the RWA Hamiltonian, coefficients

Trp?= (21)

There is no dependence on the state of the bath. For arbitraw(t) and Dk(t) in Eqs (4) and (5) are equa| to zero. As a

temperaturgx(t)) and(p(t)) depend only on their initial

average values. In the limit of infinitely long timés(t))
and(p(t)) vanish.

result,a’=1 and y=0 and for long times T?=1. In this

case, the reduced vacuum of the oscillator is a pure state that
is identical to the ground state of the uncoupled oscillator.

For the variances of the oscillator coordinate and momen-

tum, we obtain

h
(X2(t))— <X(t)>2:2_mv (A*+C)?((a'a™y—(a")(a'))

+(A+C*)?((aa)—(a)(a))

+2|(A+C*)|?| (aTa)—(a')(a)+ %

+2(a+7+7*)},

(P*(0)~(p()*= @[—(A* —C)*(a'a’)—(a'\(a")
—(A=C*)*((aa)—(a)(a))

1
+2|(A=C*)|?| (a'a)—(a'a) + 5

+2(01—3/—7*)}- (18

IV. THE NUMBER STATES FOR THE BATH MODES

We now consider the initial state of the bath with each
mode in a number state

Hnd)=Ine)@ln)@- -, (22)

with {n,} denoting a set of occupation numbenrg for all
modes.
FunctionF(#,t) can be calculated using the identjtiQ]

T % 12
(nem 7Py =e 177 (5]7), (23
whereL ,(x) is a Laguerre polynomial. We obtain

F(pty=e @l ™ P I L ((9B*— 7* D).
k

(24)

The behavior of average coordinate and momentum of the
oscillator is exactly the same as for the equilibrium state of

These quantities depend both on the initial state of the oscithe bath and given by Eq17). Thus,(x(t)) and(p(t)) do

lator and the temperature of the bath. Fes«, we have

not depend on the particular set of occupation numbers. Both

026111-3



ANDREY PEREVERZEV PHYSICAL REVIEW E68, 026111 (2003

guantities vanish fot—oc. For the variances of the coordi- —s % .
nate and momentum, we have (XY= ()= (@t yat v,
(1) = (x())?= 5| (A* +C)*((a"a") —(a")(a")) (P?)—(p)?=hmv(a.— y.— v%). (29
+(A+C*)%((aa)—(a)(a)) Here, we use overlining to denote averaging over the en-
semble of pure states.
1 The fact that the average variances are the same as for the
2[ fata)—(at hl
+2[(A+CH)[7| (a'a)—(a)(a)+ 2 equilibrium ensemble is not surprising since expressions in
Eq. (25) are linear inn,’s. More importantly, in the thermo-
(a4 T+ ) dynamic limit almost all states in ensemh&7) will have
arTyTYy ) the same variances as in equilibrium. Let us show this for the

coordinate variance. We can treat the coordinate variance as
5 2_ . 2 tot ot a function of random variablas, described by the distribu-
(PA(1)) —(p(1)) —(A*=C)*((a'a")—(a’)(a’))  tion P,({n,}). Calculating the variance of this function for
the distributionP,({n,}), we obtain

()= (x)2)2=((x*) = (%) - ((X*)=(x)?)

—<A—C*>2(<aa>—<a><a>>

+2|(A-C*)J? 2

(aTa>—<aT><a>+% .
T 2,2 Ek: (Bt D)4 (ng—n}). (30)

+2<E—~y—”y*>}, (25)
We note that coefficient8, and D, must depend on the
number of bath modeN as 1A/N in order for the quantities
like Eq. (25) to remain finite in the thermodynamic limit.
Therefore, the sum oveein Eq. (30) is proportional to 1N

where

ZFE (IBy[>+[Dy|?)| ny+ 5 and vanishes foN—. A similar argument can be applied
k 2 2 . e .
to [(p“(t))—(p(t))]. Thus, as in equilibrium case, we ex-
pect the variances to grow &3 for high occupation num-
Y= BDy| Nt 5. 26)  bers.
’ Ek TR 2 (26 Let us now consider the behavior ofgfr Using defini-

tion (8) and characteristic functio(24), we obtain
The variances differ from the equilibrium ensemble case by

the replacement afi, with ny. - 5 . )
To get a better picture of how these values relate to the Trp™=— d*7|x(#A* = 7*C),0)|
equilibrium case, we have to make some assumption about o2 ox 2 042
the occupation numbers. Let us consider an ensemble of the x @~ 2@ =y =y )
occupation number states corresponding to the number state
decomposition of the equilibrium density matrix Xl'k[ Lnk(|(778*k_ 7*DY)?). (31)
Peq:{nEk} {nih) Pa({mi) ({ni}|- (27 it number states are taken from ensemkdl@, we can cal-

culate average P¥ for number states in this ensemble. Us-
Here the probability for a particular set of occupation num-ing the identity[20]

bersP,({ny}) is given by

1 27X
2 L2(x)z" ——ex;{—r> (lIzZ<1), (32
Po(ind) =11 (1—eFregerfronn (29) z

we obtain

We now assume that the number states are taken from en-

semble(27). Any quantities calculated for each individual — 1 [ , N 20-2(al 727" 2= y7*?)
number statge.g., averages, variancesp?y can then be 1P T d2y|x(nA* — 5" C) 0| e 2l "

averaged ovelP,({n,}) to obtain their average values in (33
ensemblg27). These latter averages will give typical values
for the pure state quantities in ensem(i&). This is exactly the same asgfrin Eq. (20). We can see that,

Averaging variance&5) over ensemblé27) will give the  at least on the average, gfr for number states from en-
same variances as for the equilibrium case. In particular, isemble(27) is the same at all times as for the case of equi-
the limit of long times, we have librium bath. As a consequence, in the limit of long times the
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state of the oscillator becomes less pure for higher occupaGlearly,(x(t)) and(p(t)) are also realizations of the normal

tion numbers for the bath modes.

V. COHERENT STATES FOR THE BATH MODES

noise. The mean in this case is, in general, nonzero but will
go to zero for long times.

Let us evaluate the typical asymptotic values taken by
(x(t)) and{p(t)). This can be done by calculating average

We now consider the case where all bath modes are ini¢x)2 and(p)2 for ensemblg38),

tially in coherent states.
B =Bk @[ B)® -,

with {B,} denoting a set of complex numbesg specifying

(39

the coherent states. One can interpret such a state as the most

classical state of the bath. Functiéif ,t) is calculated to
be

O% 2 0 %2

O gl 2+ 5% n?+907* 2.

F(pt)y=e% 7 07" ~a (35)

Here
5=2k (BkBk+DiBBy). (36)

For the average coordinate and momentum, we obtain

h
(X(1) =\ 5[ (A* +C)(a")+ (A+C*)(a)+ 5+ 5],

~ [hmy
(p() =i \/ Z1(A*—C)(a")~ (A= C*)(a)+ 5" — ].
(37)
To get a better understanding of h@w(t)) and(p(t)) be-

have, we have to make some assumption about parameters 2

By -

— A
(x)2= —(anty.t yi—al—92—9%%), (4D

(PY?=himv(a.—y.— vi—ad+y2+9%). (42

For high temperatures, these quantities are proportional to
kT. Therefore, typical asymptotic values for) and({p) are
proportional toVkT.

The coordinate and momentum variances are the same as
for the case of equilibrium bath at zero temperature, i.e., they
are given by Eq(18) with « andy replaced bya® and »°,
respectively. Therefore, these variances do not depend on a
particular set of parametegd, and their asymptotic values
are the same as for the reduced vacuum state of the oscillator.

The value of Tp? is given by

1
Trpz:;f d?y|x((nA* — 7*C),0)|?

X e—2(010|77|2— % 712—7071*2)'

(43

and is the same as in the case of zero temperature bath with
the asymptotic value given by
1

= . 44
2\(a2)2-4|y))? 49

Trp

Analogously to the procedure used for the number state
bath, let us assume that the coherent states are taken from tht®re generally, the asymptotic characteristic function is de-
ensemble corresponding to the coherent states decomposititermined by the asymptotic form of functidf( »,t) (35) and

of the equilibrium density matrix

pea | PIBIABHPABIIBY. (@8
The probability distributiorP ({8,}) is given by
1 _ 2
P =11 —_exp( B ) (39)
k Ny Ny

Decomposition(38) is just theP representation of the equi-

librium density matrix{4].
If the coherent states are taken from ensent®®, then,

for each set of the coherent staté$t) is a realization of a
complex colored normal noise with zero mean and correla

tion functions given by

5<t>5*<t’>=2k [Bi(1)B} (t')+Dy(t)DF (t)Iny,

5<t>6<t'>=; [B()Dy(t") + B (t")Di () In,.  (40)

corresponds to the density matrix that is a displaced reduced
vacuum state, ..,

p=D(8)pyacD(9), (45)
where the displacement operaf( ) is given by
D(8)=e% "2 (46)

We can conclude that for coherent states bath in the limit
of long times the oscillator becomes localized in the follow-
ing sense: the coordinate and momentum variances, as well
as entanglement to the bath, are same as for the reduced
vacuum(and do not depend on temperafunehile the aver-
age coordinate and momentum randomly fluctuate with the
amplitude of the fluctuations proportional t&kT. The rate
of such localization is of the order of the relaxation rate as
can be concluded from Eq18) for T=0.

For the special case of the RWA Hamiltonian, the
asymptotic state of the oscillator is a pure coherent state. The
oscillator can start in a mixed or pure state, it then goes
through a period of entanglement and asymptotically its state
becomes a pure coherent state with randomly fluctuating av-
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erage coordinate and momentum. If the oscillator is initially ;7 dx Jx
in a coherent state it will always remain in a coherent state, — =[&*(t) p+ (1) p* == +[£(t) n* + * (1) 7] .
never entangling with the batf21]. In the Appendix, we at I an*
give explicit expressions for pE(t) for two types of initial (51)
oscillator states for the RWA case.

Here £(t) and {(t) are given by
VI. EXACT MASTER EQUATIONS

There is a similarity of a mathematical nature between the A*A—C*C CA—
coherent states bath and bath in equilibrium. In both cases fO)=———77, (=7
function F(#,t) is Gaussian, and, as a result, the character- [AI"-[C] [AI"-[C]
istic function satisfies simple master equations as will be
shown shortly. I N =~ . .

Before doing so let us note that for any factorized initial %ﬁgi&:tnu;rézfaetfig"“%? qu (47) into Eq. (51) we obtain the
conditions(for any system-bath modethere always exists X:
an exact equation for the reduced density matrix with the
time evolution governed by a time-dependent operator thapy dx [dInF
does not depend on the state of the system. Obtaining ar, =[&*(t) 7+ 5(0#‘][5—( P )X}
explicit expression for such an operator can, in general, be a

(52

difficult task. Let us show that such an operator can be con- ax JInE JInE
structed for the present model. We will continue to use the +[E) p* + (1) 7] - —|x +( n )X-
characteristic function space because of its mathematical an an

convenience. If necessary, the equations can be transformed (53
into other representations. To simplify the demonstration, we

introduce the following transformed characteristic function o ] o i
This is a closed equation for characteristic functjygy,t).

5 x(7,t) The explicit form of the timt_e-dependent_ operator_ is deter-
x(n,t)= ol (47) mined by functionF(#,t), which, in turn, is determined by
(7.1) the initial state of the bath. We will not go into the analysis
_ of this equation and limit ourselves to a few remarks. This
Using expression{10) for x(»,t) and the fact thai(7,0)  equation is always local in thg space. However, transform-
= x(7.,0), we can write functiory( »,t) at timet in terms of  ing it into the quasiprobability distribution space or coordi-
(7,0 as nate or momentum representation for the density matrix will,
in general, lead to nonlocal equations. Only for some special
forms of F(#,t) can we expect to get local equations in these
representations. Note that exact master equations for the
~ oscillator-bath model that appeared in the literature use equi-
We now use the fact that(#,t) depends ony, »*, andt |iprium initial state for the batfi2,7], squeezed equilibrium
only through 7A* — »*C) and (»* A—nC*). Differentiat-  for the bath[14], or modified equilibrium for the whole sys-
ing solution(48) with respect to time, we have tem[11,10. When converted into the characteristic function
space, all these equations contain time-dependent operators

X(7.0)=x((nA* — 5*C),0). (48)

ax B ax s s ax o that are at most quadratic i, 7*, (9/(9_77, andaldn* . This
5t —m( nA* —5*C)+ W( 7°A  form of the time-dependent operator is related to the fact that
propagating function for such initial conditions is Gaussian.
— 7C*). (49) Inspection of Eq(53) shows that such a simple form of the

time-dependent operator in our case is possible only for
Gaussian functiong (7,t).

We now consider particular form of E¢3) for this spe-
cial case, i.e., when functiofR( »,t) is given by

For derivatives with respect tg and »*, we obtain

*

X__ X X
N g(nA*—n*C a(n* A—nC* * 0 on* - *
(7] 7 ) (77 7 ) F(ﬂ,t):eé 7= 97 —2|7]|2+Z 7]2+177 2. (54)

dx dx dx
X _ X ci X
an* HnA*—9*C)  d(n*A—nC*)

50 Here, o, a, andy are time-dependent parameters character-

izing each particular Gaussian state of the bath. Function
- (54) will include such states for the bath modes as equilib-
Solving the last two equations for the derivativesyofvith  rjum, squeezed states, squeezed and displaced equilibrium,
respect to gA”™ —*C) and (7*A—7C*) and substituting  etc. Substituting Eq’54) into Eq. (53), we obtain after some
them in Eq.(49), we obtain a closed equation fer, simplifications
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We believe, however, that it can be of importance, that, when
quantities like variances and g are calculated for indi-
vidual members of the ensemble, we can get drastically dif-
ferent behavior for the system for different decompositions,
as was shown in this paper.

(9X_ * * (9X * *
E—[f (On+it)n ]%Jr[f(t)n +* ()]

dx
an*
+ (0] 72x+ w* (1) 7°x + m(t) * 2+ o* (1) px

—o(t)n* x. (59

Coefficientsk(t), u(t), ando(t) are given by
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o(t)={8* —£5+6. (56) APPENDIX

In the case of the equilibrium bath, we need to put «,

y=7, andg=0 in Eq.(56). In this case, the last two terms ¢\ "+ . :
. . . . ypes of initial pure states of the oscillator for the
on the right-hand side of E¢55) disappear and the equation RWA Hamiltonian if the bath modes are initially in coherent

becomes the characteristic function version of the Hu-Paz:
zh tiori7,2] for Hamiltonian (1), i.e., it will all states.

ang equa |orﬁ_ ] or Hamiitonian{L), 1.., 1t witl allow Let the oscillator be initially in a squeezed state obtained
for the possibility of momentum-momentum and

momentum-coordinate couplings between the bath and thgxdagfgnpgfaggngrleer]toosgglrzia't%rrsg;round state with the squeezing
oscillator.

If the bath modes are initially in coherent states then we _
have to usex=a®, y=+°, and§= 4. If the coherent states [#)=D(a)S(2)[0). A
are taken from ensembi(88), then, for each particular set of Here the squeezing operatSfs
statesg(t) will be a realization of a complex colored normal
noise. The equation becomes a stochastic master equation
with a multiplicative noise. In this case E(p5) describes
the oscillator localization in the sense discussed above with
the average coordinate and momentum subject to randof{% ¢
fluctuation. Equations of such type can be of interest in thd€SSion(
theory of quantum measurement as an alternative to the sto-
chastic Schrdinger equation$22]. In particular, compared 5 1
to the latter equations, E@55) does not conserve purity of Trp™() = I+ 4[A0) [ 1— A F]sinter '
the state. Such behavior is more physically plausible for a
system coupled to a bath.

In this appendix, we give explicit expressions fopiit)

) is given by
S(e)= e(a*/z)a—(glz)a’f, (A2)

de=re?? is a complex squeezing parameter. Using ex-
43) for Trp2, we obtain

A3)

The maximum entanglemenfor minimum Tp?2(t)] is
reached whehA(t)|2=1/2. Moreover, Tp?(t) is a symmet-
VIl. CONCLUDING REMARKS ric function of |A(t)|? with respect to this point. When

2_
Equilibrium density matrix is often considered as an irre-|A(t)| =1/2, we have
ducible concept, viz., it is assumed that this is a true state of
the bath in each individual experiment. We believe that such 2_ 1
S L o - Trp =———. (A4)
a view is an oversimplification, and it is more realistic to J1+sinrér
assume that true state of the bath is a density matrix or even

a pure state which includes some random component. ERye have larger entanglement for larger squeezing it Tr
semble of such states for different realizations of the randongoing to zero whem goes to infinity.

component gives an equilibrium density matrix. Such a view" \ve now consider an initial state of the oscillator given by
is partially supported by classical statistical mechanics. Iny syperposition of two coherent states
deed, most physicists agree that the “true state” of the clas-

sical bath in thermal equilibrium is a point in phase space. 1
The coarse-grained macroscopic observables for such a point |y =—=(la)+|B)), (A5)
(e.g., number of particles in a volume elemeate essen- VN
tially the same as calculated for one of the Gibbs ensembles
(of such pointg for large enough course graining3]. whereN is the normalization constant,
It is true that the ensemble decomposition of the equilib-
rium density matrix in terms of other density matrices N=2+(a|B)+(B|a). (A6)

pure statesis not unique, and that the averages calculated
for any decomposition are identical to equilibrium averageslin this case we obtain for Bf(t),

026111-7
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2 Using Eq.(A6), writing (| 8) as R& and remembering that
Trp2(t)=1+ m(efuflA(t)lzﬂwﬁlu e IAMP|a—p

e la A= |(a| ), (A9)
_elaB_
e 1). A7 .
) (A7) we obtain
One can easily verify that pf(t) takes its minimum value )
again at|A(t)|?=1/2, and Tp?(t) is again a symmetric Tro?—1— (1-R) AL0
function of |A(t)|? with respect to that point, which may be p™= 2(1+Rcose)?’ (A10)

a general property of this model. Let us consides?{t) at

2__
|A(t)[*=1/2. We have We can see from the last expression that the minimup? Tr

5 decreases with the decreasing overlap between the two co-
Trp2= 1— _(1_e—|a—5\2/2)_ (A8) herent states. Note, however, that in this ca:p? Tan never
N2 become less than 1/2.
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